Multiplicity of Positive Solutions for Semilinear Elliptic Systems

نویسنده

  • Tsing-San Hsu
چکیده

and Applied Analysis 3 Let Kλ,μ : E → R be the functional defined by Kλ,μ (z) = ∫ Ω (λf (x) |u| q + μg (x) |V| q ) dx ∀z = (u, V) ∈ E. (11) We know that Iλ,μ is not bounded below on E. From the following lemma, we have that Iλ,μ is bounded from below on the Nehari manifoldNλ,μ defined in (9). Lemma 3. The energy functional Iλ,μ is coercive and bounded below onNλ,μ. Proof. If z = (u, V) ∈ Nλ,μ, then by (10), the Hölder inequality, and the Sobolev embedding theorem, we get Iλ,μ (z) = 2 ∗ − 2 22 ‖z‖ 2 E − 2 ∗ − q 2q Kλ,μ (z) (12) ≥ 1 N ‖z‖ 2 E − 2 ∗ − q 2q γ∞S −q/2 |Ω| (2 ∗ −q)/2 ∗ × (λ 2/(2−q) + μ 2/(2−q) ) (2−q)/2 ‖z‖ q E . (13) Hence, we have that Iλ,μ is coercive and bounded below on Nλ,μ. Define Φλ,μ (z) = ⟨I 󸀠 λ,μ (z) , z⟩ . (14) Then, for z ∈ Nλ,μ,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions

In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

Structure of the solution set for a class of semilinear elliptic equations with asymptotic linear nonlinearity

We consider a semilinear elliptic equation with asymptotic linear nonlinearity applying bifurcation theory and spectral analysis. We obtain the exact multiplicity of the positive solutions and a very precise structure of the solution set, which improves the previous knowledge of the problem.

متن کامل

A Semilinear Elliptic Problem Involving Nonlinear Boundary Condition and Sign-changing Potential

In this paper, we study the multiplicity of nontrivial nonnegative solutions for a semilinear elliptic equation involving nonlinear boundary condition and sign-changing potential. With the help of the Nehari manifold, we prove that the semilinear elliptic equation: −∆u+ u = λf(x)|u|q−2u in Ω, ∂u ∂ν = g(x)|u|p−2u on ∂Ω, has at least two nontrivial nonnegative solutions for λ is sufficiently small.

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Morse indices and Exact multiplicity of solutions to Semilinear Elliptic Problems

We obtain precise global bifurcation diagrams for both one-sign and sign-changing solutions of a semilinear elliptic equation, for the nonlinearity being asymptotically linear. Our method combines the bifurcation approach and spectral analysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014